If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-34x-55=0
a = 9; b = -34; c = -55;
Δ = b2-4ac
Δ = -342-4·9·(-55)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34)-56}{2*9}=\frac{-22}{18} =-1+2/9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34)+56}{2*9}=\frac{90}{18} =5 $
| 6/5x=180 | | 2x-5(x+3)=9 | | 4/n=12/5 | | F(x)=-2x2+x-15 | | v=4/3*3.14*125 | | x=-3x^2-3 | | 3-x-x²=(-x²-8)-3 | | 10.23x1.4=14.32 | | 45=6x-20 | | x-7=18+7 | | -(-2+4x)-1+3x=-4 | | 5x+x=92 | | ((x+6^1/2)+(x+1^1/2))^1/2=(7x+4)^1/2 | | 21x^2-44x-3=0 | | 3e+4e+6=20 | | 0=-4.9t^2+9.5t+3.2 | | x-(2+3x)+2=9 | | 21x-26x=6-11 | | 2x+14=3x+9 | | 4x+11=5x+6 | | -40+22=-6x+12x | | (3.6+2x)^2=-0.1764x+0.049x^2 | | 8x+16=10x+4 | | 5b^2-12b-32=0 | | 0.6=-20z | | 7x+17=9x-3 | | 69*t/60=60(t+13)/60 | | 5x+11=6x+7 | | 0.5r=-25 | | 8.5^x-2=21 | | 1/4(-8k+44)=7+10k | | 2/3÷x=1/2+1/3 |